Drone / en U of T's Angela Schoellig named to MIT's list of Innovators Under 35 /news/u-t-s-angela-schoellig-named-mit-s-list-innovators-under-35 <span class="field field--name-title field--type-string field--label-hidden">U of T's Angela Schoellig named to MIT's list of Innovators Under 35</span> <div class="field field--name-field-featured-picture field--type-image field--label-hidden field__item"> <img loading="eager" srcset="/sites/default/files/styles/news_banner_370/public/2017-08-15-angela-schoellig-resize.jpg?h=afdc3185&amp;itok=BYp1Xul2 370w, /sites/default/files/styles/news_banner_740/public/2017-08-15-angela-schoellig-resize.jpg?h=afdc3185&amp;itok=lIMXJv4X 740w, /sites/default/files/styles/news_banner_1110/public/2017-08-15-angela-schoellig-resize.jpg?h=afdc3185&amp;itok=ySF1qi4n 1110w" sizes="(min-width:1200px) 1110px, (max-width: 1199px) 80vw, (max-width: 767px) 90vw, (max-width: 575px) 95vw" width="740" height="494" src="/sites/default/files/styles/news_banner_370/public/2017-08-15-angela-schoellig-resize.jpg?h=afdc3185&amp;itok=BYp1Xul2" alt> </div> <span class="field field--name-uid field--type-entity-reference field--label-hidden"><span>ullahnor</span></span> <span class="field field--name-created field--type-created field--label-hidden"><time datetime="2017-08-16T10:38:09-04:00" title="Wednesday, August 16, 2017 - 10:38" class="datetime">Wed, 08/16/2017 - 10:38</time> </span> <div class="clearfix text-formatted field field--name-field-cutline-long field--type-text-long field--label-above"> <div class="field__label">Cutline</div> <div class="field__item">Professor Angela Schoellig demonstrates a drone that can land on water to take environmental samples (photo by Tyler Irving)</div> </div> <div class="field field--name-field-author-reporters field--type-entity-reference field--label-hidden field__items"> <div class="field__item"><a href="/news/authors-reporters/tyler-irving" hreflang="en">Tyler Irving</a></div> </div> <div class="field field--name-field-author-legacy field--type-string field--label-above"> <div class="field__label">Author legacy</div> <div class="field__item">Tyler Irving</div> </div> <div class="field field--name-field-topic field--type-entity-reference field--label-above"> <div class="field__label">Topic</div> <div class="field__item"><a href="/news/topics/breaking-research" hreflang="en">Breaking Research</a></div> </div> <div class="field field--name-field-story-tags field--type-entity-reference field--label-hidden field__items"> <div class="field__item"><a href="/news/tags/faculty-applied-science-engineering" hreflang="en">Faculty of Applied Science &amp; Engineering</a></div> <div class="field__item"><a href="/news/tags/utias" hreflang="en">UTIAS</a></div> <div class="field__item"><a href="/news/tags/drone" hreflang="en">Drone</a></div> <div class="field__item"><a href="/news/tags/robots" hreflang="en">Robots</a></div> <div class="field__item"><a href="/news/tags/autonomous-vehicles" hreflang="en">Autonomous Vehicles</a></div> </div> <div class="field field--name-field-subheadline field--type-string-long field--label-above"> <div class="field__label">Subheadline</div> <div class="field__item">Engineering researcher recognized by MIT Technology Review</div> </div> <div class="clearfix text-formatted field field--name-body field--type-text-with-summary field--label-hidden field__item"><p>Assistant Professor <strong>Angela Schoellig</strong>&nbsp;of the University of Toronto Institute for Aerospace Studies (UTIAS) has been named one of the world’s top <a href="https://www.technologyreview.com/lists/innovators-under-35/">Innovators Under 35 by MIT Technology Review</a>.</p> <p>The Faculty of Applied Science &amp; Engineering's Schoellig works on control theory and applying&nbsp;machine learning to drones, autonomous vehicles and other robots.</p> <p>“It’s an honour,” says Schoellig of the publication's recognition.&nbsp;“To be named among this group of luminaries comes as a wonderful surprise. It’s also great for my students and postdoctoral researchers, because it’s really about their work as well.”</p> <p>As a child, Schoellig was captivated by mathematics. During her master’s degree, she studied mathematical models that could describe everything from the chemical reactions in a living cell to the movements of birds. When she learned that mathematical algorithms could also be used to program robots, she was hooked.</p> <p>“I really wanted to do something where you directly see the impact and the result,” she says.</p> <p>As a PhD student at ETH Zurich, where she worked under the supervision of robotics pioneer and U of T engineering alumnus <strong>Raffaello D’Andrea</strong>, Schoellig and her colleagues worked on software that could enable flying robots to execute <a href="https://www.youtube.com/watch?v=bWExDW9J9sA&amp;&amp;feature=youtu.be">a triple flip in the air</a>, as well as <a href="https://www.youtube.com/watch?v=Glvla0nFWHo">other</a> <a href="https://www.youtube.com/watch?v=zHTCsSkmADo">acrobatics</a>. But she quickly discovered that the algorithms alone weren’t enough.</p> <p><iframe allowfullscreen frameborder="0" height="500" src="https://www.youtube.com/embed/sBBAb04OFc8" width="750"></iframe></p> <p>“The model that we had would not provide enough information for the robot to do the task,” she says. “You need to use the data from previous runs to improve the task execution, which gets you closer to how humans learn things.”</p> <p>In other words, she needed to apply machine learning to robots.</p> <p>Machine learning, a form of artificial intelligence, has become a common part of our lives –&nbsp;it’s what enables smartphones to recognize voice commands and computer programs to recognize faces in photos. But teaching a robot is a very different challenge from teaching a computer.</p> <p>“If a computer doesn’t recognize a face, that’s not a big deal,” says Schoellig. “But if a robot makes a mistake, it could crash. While you can train a computer on millions of photos, getting that amount of data for a robot is very expensive and difficult.”</p> <p>One of Schoellig’s biggest challenges is designing algorithms that are flexible enough to enable robots to experiment&nbsp;but rigid enough to ensure that they will be safe while they are learning the new task.</p> <p>Another major challenge Schoellig works on is handling dynamic environments, where conditions change over time. One of her current projects aims to enable <a href="/news/u-t-researchers-collaborate-government-and-industry-improve-drone-navigation">autonomous drones to make deliveries to remote locations</a>, such as communities in Canada’s north. These drones would need to adapt to changing wind speeds and light conditions that make navigation difficult.</p> <p>Schoellig also has projects in the mining and environmental monitoring sectors, such as developing a drone that can land on water and take samples to track pollution levels. She is even looking at the possibility of using drones to deliver <a href="/news/u-t-researchers-drone-delivered-aeds-offer-novel-approach-saving-lives-home">automated external defibrillators (AEDs)</a> to treat patients suffering cardiac arrest.</p> <p>For Schoellig, smarter robots have the potential to make our lives better and easier.</p> <p>“We hear a lot about how robots will replace humans, but that’s not how I see it,” she says. “Humans have always built tools to help them to advance, from a simple hammer to a computer. We couldn’t predict in the 1970s how computers would change our society. I think we are at a similar point with robotics, and I’m excited to see what creative ideas will emerge.”</p> </div> <div class="field field--name-field-news-home-page-banner field--type-boolean field--label-above"> <div class="field__label">News home page banner</div> <div class="field__item">Off</div> </div> Wed, 16 Aug 2017 14:38:09 +0000 ullahnor 112583 at