海角视频

Co-authors Zhijun Ning (left) and Oleksandr Voznyy (right) examine a film coated with colloidal quantum dots (photo by Roberta Baker)

Bringing cheaper, lighter solar cells outdoors

鈥淭he field has moved fast, and keeps moving fast, but we need to work toward bringing performance to commercially compelling levels鈥

Think those flat, glassy solar panels on your neighbour鈥檚 roof are the pinnacle of solar technology? Think again.

Researchers in the University of Toronto鈥檚 Edward S. Rogers Sr. Department of Electrical & Computer Engineering have designed and tested a new class of solar-sensitive nanoparticle that outshines the current state of the art employing this new class of technology.

This new form of solid, stable light-sensitive nanoparticles, called colloidal quantum dots, could lead to cheaper and more flexible solar cells, as well as better gas sensors, infrared lasers, infrared light emitting diodes and more. The work, led by post-doctoral researcher Zhijun Ning and Professor , was in Nature Materials.

Collecting sunlight using these tiny colloidal quantum dots depends on two types of semiconductors: n-type, which are rich in electrons; and p-type, which are poor in electrons. The problem? When exposed to the air, n-type materials bind to oxygen atoms, give up their electrons, and turn into p-type.

Ning and colleagues modelled and demonstrated a new colloidal quantum dot n-type material that does not bind to oxygen when exposed to air.

Maintaining stable n- and p-type layers simultaneously not only boosts the efficiency of light absorption, but also opens up a world of new optoelectronic devices that capitalize on the best properties of both light and electricity. For you and me, this means more sophisticated weather satellites, remote controllers, satellite communication or pollution detectors.

鈥淭his is a material innovation, that鈥檚 the first part, and with this new material we can build new device structures,鈥 said Ning. 鈥淚odide is almost a perfect ligand for these quantum solar cells with both high efficiency and air stability鈥攏o one has shown that before.鈥

Ning鈥檚 new hybrid n- and p-type material achieved solar power conversion efficiency up to eight per cent鈥攁mong the best results reported to date.

But improved performance is just a start for this new quantum-dot-based solar cell architecture. The powerful little dots could be mixed into inks and painted or printed onto thin, flexible surfaces, such as roofing shingles, dramatically lowering the cost and accessibility of solar power for millions of people.

鈥淭he field of colloidal quantum dot photovoltaics requires continued improvement in absolute performance, or power conversion efficiency,鈥 said Sargent. 鈥淭he field has moved fast, and keeps moving fast, but we need to work toward bringing performance to commercially compelling levels.鈥

This research was conducted in collaboration with Dalhousie University, King Abdullah University of Science and Technology and Huazhong University of Science and Technology.

The Bulletin Brief logo

Subscribe to The Bulletin Brief